A Remark on Littlewood-paley Theory for the Distorted Fourier Transform

نویسنده

  • W. SCHLAG
چکیده

We consider the classical theorems of Mikhlin and LittlewoodPaley from Fourier analysis in the context of the distorted Fourier transform. The latter is defined as the analogue of the usual Fourier transform as that transformation which diagonalizes a Schrödinger operator −∆+ V . We show that for such operators which display a zero energy resonance the full range 1 < p < ∞ in the Mikhlin theorem cannot be obtained: in the radial, threedimensional case it shrinks to 3 2 < p < 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Littlewood–Paley Inequality: A Survey

Let Sωf = ∫ ω f̂(ξ)e ixξ dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood Paley inequality [31] states that for any collection of disjoint intervals Ω, we have ∥∥ [∑ ω∈Ω |Sωf | 1/2∥∥ p . ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multipliers.

متن کامل

Littlewood–Paley Inequailty: A Survey

Let Sωf = ∫ ω f̂(ξ)e ixξ dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood Paley inequality [28] states that for any collection of disjoint intervals Ω, we have ∥∥ [∑ ω∈Ω |Sωf | 1/2∥∥ p . ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multipliers.

متن کامل

Issues related to Rubio de Francia’s Littlewood–Paley inequality

Let Sω f = ∫ ω f̂(ξ)e dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood–Paley inequality (Rubio de Francia, 1985) states that for any collection of disjoint intervals Ω, we have ∥∥∥∥ [∑ ω∈Ω |Sω f | 1/2∥∥∥∥ p ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multiplie...

متن کامل

Issues related to Rubio de Francia’s Littlewood–Paley Inequality: A Survey

Let Sωf = ∫ ω f̂(ξ)e ixξ dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood Paley inequality [31] states that for any collection of disjoint intervals Ω, we have ∥∥ [∑ ω∈Ω |Sωf | 1/2∥∥ p . ‖f‖p, 2 ≤ p <∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multipliers.

متن کامل

Pseudo-localization of Singular Integrals and Noncommutative Littlewood-paley Inequalities

Understood in a wide sense, square functions play a central role in classical Littlewood-Paley theory. This entails for instance dyadic type decompositions of Fourier series, Stein’s theory for symmetric diffusion semigroups or Burkholder’s martingale square function. All these topics provide a deep technique when dealing with quasi-orthogonalitymethods, sums of independent variables, Fourier m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006